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Abstract—Joint spectrum sensing and direction of arrival (DOA)
estimation is often necessary in communication applications, such as
Cognitive Radio (CR). In this paper, we consider joint DOA and
carrier frequency recovery of several transmissions as well as signal
reconstruction from sub-Nyquist samples to overcome the sampling
rate bottleneck of the wideband signals a CR typically deals with. We
present two joint DOA and carrier frequency recovery approaches.
The first is based on compressed sensing (CS) techniques and the
second adapts a 2D-DOA recovery algorithm previously proposed in
the Nyquist regime, the Parallel Factor (PARAFAC) analysis algorithm,
to our sub-Nyquist samples. This technique allows us to solve the well
known pairing issue between the DOA and carrier frequency to be
recovered for each transmission. Once these are recovered, we show
how the signal itself can be reconstructed from the samples. We also
provide sufficient conditions for perfect blind signal recovery in terms
of the sampling rate and the number of array elements.

I. INTRODUCTION

Spectrum sensing is a well-known task shared by many commu-
nication applications. Sometimes, the sole recovery of the signal
support is not enough and both carrier frequency and direction of
arrival (DOA) recovery are required. Cognitive Radio (CR) is such
an example, whose aim is to solve the spectrum crowdedness [1], [2],
[3]. Secondary users would opportunistically access frequency bands
left vacant by their primary owners increasing spectral efficiency.
Spectrum sensing is an essential task in the CR cycle [3]. Indeed,
a CR should be able to constantly monitor the spectrum and detect
the primary users (PUs) activity, reliably and fast [4], [5]. Moreover,
DOA recovery would enhance the performance of CR by allowing
it to exploit vacant bands, both spectrally and spatially.

Joint DOA and carrier frequency estimation has been considered
in [6], [7], where the authors developed a joint angle-frequency
estimation (JAFE) algorithm. JAFE is based on an extension of the
ESPRIT algorithm [8] which allows for multiple parameters to be
recovered. However, this method requires additional pairing between
the carrier frequencies and the DOAs of the different transmissions.
In [9], the authors consider multiple interleaved sampling channels,
with a fixed delay between consecutive channels and propose a two-
stage reconstruction, where the frequencies are first recovered and
the DOAs are computed from their corresponding estimated carriers.
Both works assume that the signal is sampled at least at its Nyquist
rate and do not consider signal reconstruction.

To increase the chance of finding unoccupied spectral bands, CRs
have to sense a wide spectrum band, leading to prohibitively high
Nyquist rates which can even exceed today’s best analog-to-digital
converters (ADCs) bandwidths. Moreover, such high sampling rates
generate a large number of samples to process, affecting speed and
power consumption. A few works have recently considered joint
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DOA and spectrum sensing from sub-Nyquist samples, assuming
that the input signal is sparse in the frequency domain.

In [10], the authors exploit a mathematical relation between sub-
Nyquist and Nyquist samples over a certain sensing time, whereas
no specific sampling scheme is provided. The signal power spectrum
is recovered from samples of an array, which is not necessarily a
uniform linear array (ULA). Since the power spectrum is computed
over a finite sensing time, the frequencies and angles are obtained on
a grid defined by the number of samples. In [11], two interleaved L-
shaped arrays, with a fixed delay between the two, sample the signal
at a sub-Nyquist rate. Then, the carrier frequencies and the DOAs are
recovered from the samples. However, the pairing issue between the
two is not discussed. Moreover, this delay based approached suffers
from the same drawbacks as the multicoset sampling scheme when it
comes to practical implementation, as described in [12]. Specifically,
the signal bandwidth can exceed the analog bandwidth of the ADC
by orders of magnitude. Another practical issue stems from the time
shift elements since it can be difficult to maintain accurate time
delays between the ADCs at such high rates.

In this work, we consider several narrowband transmissions
spread over a wide spectrum, impinging on an L-shaped ULA,
each from a different direction. The array sensors are composed
of an analog mixing front-end, implementing one channel of the
modulated wideband converter (MWC) [12]. The signal is mixed
by a periodic function, low-pass filtered and sampled at a low
rate. We then propose two approaches to jointly recover the carrier
frequencies and DOAs of the transmissions. The first is based on
compressed sensing (CS) techniques that allow us to recover both
parameters assuming they lie on a predefined grid. Particularly, we
use the extended versions of orthogonal matching pursuit (OMP)
and fast iterative shrinkage-thresholding algorithm (FISTA) adapted
to sparse matrix recovery proposed in [13]. The second approach
exploits the Parallel Factor (PARAFAC) analysis method [14], [15],
previously proposed for the 2D-DOA problem. This approach solves
the delicate issue of pairing between the two estimated angles.
However, it has only been applied in the Nyquist regime so far.
Here, we apply it on sub-Nyquist samples and extend it to the case
where the second variable is a frequency rather than an additional
angle. Once the carriers and DOAs are recovered, we show how
the signal itself can be reconstructed. We also provide sufficient
conditions on our sampling system for perfect reconstruction of the
carriers and DOAs on the one hand, and of the signal itself on the
other hand.

This paper is organized as follows. In Section II, we present the
signal model and goal. Sections III and IV describe the sub-Nyquist
sampling system and joint DOA estimation and spectrum sensing,
respectively. Numerical experiments are presented in Section V.

II. SIGNAL MODEL AND GOAL

Consider a scenario with up to M complex-valued continuous-
time transmissions si (t) , i ∈ {1, 2, ...,M}, each modulated by
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Fig. 1. An L-shaped array: N sensors along the x-axis and N + 1 sensors along
the z-axis.

an unknown carrier frequency fi ∈ R. The source signals
si (t) are bandlimited to B =

[
− 1

2T ,
1
2T

]
and disjoint, namely

mini 6=j {|fi − fj |} > B, where B = |B| = 1
T . The modulated

signals are bandlimited to F =
[
− fNyq

2 ,
fNyq

2

]
, that is −fNyq+B

2 ≤
fi ≤ fNyq−B

2 .
The signals si (t) are considered to be within the xz plane and

are each associated to an unknown DOA, represented by an angle
of arrival (AOA) θi, where θi is measured from the positive side of
the x-axis and |θi| < 90◦. All signals are assumed to be far-field,
non coherent, and uncorrelated, i.e. E

[
si (t) sj (t)

]
= 0 for i 6= j

and every t.
Each transmission si(t) impinges on an L-shaped array with 2N+

1 sensors in the xz plane, with its corresponding AOA θi, as shown
in Fig. 1. The array consists of two orthogonal, uniform linear sub-
arrays along the x and z-axis, with distance d < fNyq

c between two
adjacent sensors, where c is the speed of light.

Let s (t) = [s1 (t) , s2 (t) , · · · , sM (t)]
T be the source signals

vector, S (f) = [S1 (f) , S2 (f) , · · · , SM (f)]
T be the signal Fourier

transform vector, and f = [f1, f2, · · · , fM ]
T
, θ = [θ1, θ2, ..., θM ]

T

be the carrier frequencies and AOAs vectors respectively. Our goal is
to recover f , θ and the source signals s (t) from samples of the array
output. We wish to design a sampling and reconstruction system
which allows for perfect blind signal reconstruction, i.e. without
any prior knowledge on the carrier frequencies nor the AOAs. In
the next section, we describe the sampling scheme of our sensors.

III. SAMPLING SYSTEM

A. System Description

Our L-shaped array is composed of 2N+1 sensors which all have
the same sampling pattern; the received signal is multiplied by a
periodic function p (t) with period Tp = 1/fp, low-pass filtered with
a filter that has cutoff-frequency fs, and then sampled at the low rate
fs. In the next section, we show how we can recover f , θ and s (t)
from these samples. We demonstrate that the minimal number of
sensors required by our reconstruction method is 2N+1 = 2M+3,
with each sensor sampling at the minimal rate of fs = B to allow
for perfect signal recovery. This leads to a minimal sampling rate
of (2M + 3)B which is assumed to be less than fNyq.

B. Frequency Domain Analysis

We now derive the relation between the sample sequences xn[k]
and zn[k] from the x and z-axis respectively, and the unknown
transmissions si(t), carrier frequencies f and AOAs θ. This analysis
is used in the next section to derive our reconstruction schemes. We
introduce the following definitions

Fp ,
[
−fp

2
,
fp
2

]
, Fs ,

[
−fs

2
,
fs
2

]
.

Consider the received signal un (t) at the nth sensor along the
x-axis:

un (t) =

M∑
i=1

si (t+ τxn (θi)) e
j2πfi(t+τ

x
n(θi))

≈
M∑
i=1

si (t) ej2πfi(t+τ
x
n(θi)), (1)

where τxn (θ) = dn
c cos (θ) is the accumulated phase at the nth sensor

with respect to the first sensor. The approximation in (1) stems from
the narrow band assumption on the transmissions si (t). The Fourier
transform of the received signal un (t) is then given by

Un (f) =

M∑
i=1

Si (f − fi) ej2πfiτ
x
n(θi). (2)

In each sensor, the received signal is first mixed with the periodic
function p (t) prior to filtering and sampling. Since p (t) is periodic
with period Tp = 1/fp, it can be represented by its Fourier series

p (t) =

∞∑
l=−∞

cle
j2πlfpt, (3)

where

cl =
1

Tp

Tp∫
0

p(t)e−j2πlfptdt. (4)

The Fourier transform of the analog multiplication ỹn (t) =
un (t) p (t) is evaluated as

Ỹn (f) =

∞∑
l=−∞

cl · Un (f − lfp) . (5)

The mixed signal Ỹn (f) is a linear combination of fp−shifted and
cl−scaled copies of Un (f). Substituting (2) in (5), we get

Ỹn (f) =

∞∑
l=−∞

cl ·
M∑
i=1

Si (f − fi − lfp) ej2πfiτ
x
n(θi).

Denote by h (t) and H (f) the impulse and frequency responses of
an ideal LPF with cut-off frequency fs, respectively. After filtering
ỹn (t) with h (t), we have

Yn (f) =


∞∑

l=−∞
cl

M∑
i=1

Si (f − fi − lfp) ej2πfiτ
x
n(θi), f ∈ Fs

0, f /∈ Fs.
(6)

Since the source transmissions are bandlimited, namely Un (f) =
0, ∀f /∈ F , the output Yn (f) involves only a finite number of aliases
of Un (f). Consequently, we can write

Yn (f) =

M∑
i=1

S̃i (f) ej2πfiτ
x
n(θi). (7)

where L0 is the smallest integer such that the sum contains all
nonzero contributions, i.e. L0 =

⌈
fNyq+fs

2fp

⌉
− 1, and

S̃i (f) =

L0∑
l=−L0

clSi (f − fi − lfp) . (8)

Note that in the interval Fp, S̃i (f) is a cyclic shifted and scaled
(by known factors {cl}) version of Si (f), as shown in Fig. 2.
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Fig. 2. The left pane shows the original source signals at baseband (before
modulation). The right pane presents the output signals at baseband S̃ (f) after
modulation, mixing and filtering.

After sampling, the discrete-time Fourier transform (DTFT) of
the nth sequence xn [k] = yn (kTs) is expressed as

Xn

(
ej2πfTs

)
=

M∑
i=1

Wi

(
ej2πfTs

)
ej2πfiτ

x
n(θi), (9)

where we define wi [k] = s̃i (kTs) and Wi

(
ej2πfTs

)
=

DTFT {wi [k]}. It is convenient to write (9) in matrix form as



X1

(
ej2πfTs

)
X2

(
ej2πfTs

)
.
.
.

XN

(
ej2πfTs

)


=


e
j2πf1τ

x
1 (θ1) · · · e

j2πfMτx1 (θM )

.

.

.

.

.

.

e
j2πf1τ

x
N (θ1) · · · e

j2πfMτxN (θM )





W1

(
ej2πfTs

)
W2

(
ej2πfTs

)
.
.
.

WM

(
ej2πfTs

)


,

or
X = Ax (f , θ) ·W. (10)

Similarly, when considering the received signal along the z-axis of
the ULA, we get

Z = Az (f , θ) ·W, (11)

where Z is the sampled output signal in the frequency domain along
the z-axis, and τzn (θ) = dn

c sin θ, n ∈ {1, ..., N+1}. Note that Z is
of length N + 1, since the ULA along the z-axis has one additional
sensor compared with the ULA along the x-axis. In the time domain,
we have

x = Ax (f , θ) ·w (12)
z = Az (f , θ) ·w, (13)

where x and z have nth element xn[k] and zn[k] respectively, and
w is a vector of length M with ith element wi[k].

In the following section we discuss possible methods to allow
for unique recovery of f and θ, present sufficient conditions to
recover the transmissions s (t) from w, and provide a concrete
reconstruction algorithm.

IV. JOINT DOA AND SPECTRUM RECONSTRUCTION

We begin by presenting two approaches for the recovery of the
carrier frequencies and the AOAs. Then, once these are estimated,
we show how we can reconstruct the transmissions si(t) from the
samples x and z.

A. Compressed Sensing Approach

Consider the correlation matrix R between the samples along
both axis, namely

R = E
[
xzH

]
= AxRwAH

z , (14)

where Rw = E
[
wwH

]
is a diagonal matrix with ith diagonal ele-

ment Rwii = E |wi|2. This stems from the fact that the transmissions

are assumed to be uncorrelated. In the following, we assume perfect
knowledge of R. In practice, it can be estimated as

R =

Q∑
q=1

x(q)z
H
(q), (15)

where Q is the number of frames for the averaging, and x(q) and
z(q) are the vectors of samples from both axis from the qth frame.

Denote αi = fi cos θi and βi = fi sin θi and suppose that αi and
βi lie on the grid {δl}Ll=−L, with L =

fNyq

2δ . Here, δ is a parameter
of the recovery algorithm that defines the grid resolution. We can
then write

R = BΦCH , (16)

where B and C are both N×(2L+1) matrices with (n, l)th element
Bnl = ej2π

dn
c αl and Cnl = ej2π

dn
c βl , respectively, with αl = βl =

δ(l−L), 0 ≤ l ≤ 2L. The nonzero elements of the (2L+1)×(2L+1)
sparse matrix Φ are the M diagonal elements of Rw at the M
indices corresponding to {αi, βi}. The goal is to recover the sparse
matrix Φ from the N × (N + 1) measurement matrix R. To this
end, we suggest to use CS algorithms for sparse matrix recovery.

1) Joint carrier frequency and AOA recovery conditions: The
following theorem derives a necessary condition on the minimal
number of sensors N for perfect recovery of αi, βi, i ∈ {1, . . . ,M}
in a noiseless environment.

Theorem 1. If d < fNyq

c , the minimal number of sensors required
for perfect recovery of Φ in (16) with M sources in a noiseless
environment is 4M + 3.

For lack of space, the proofs are omitted here. Theorem 1 is
similar to Theorem 1 in [16] and can be proved by writting (16) in
vector form and using the spark of Kronecker product from [17].

2) Joint carrier frequency and AOA recovery: To recover the
sparse matrix Φ, we solve the following optimization problem [13]

min ||Φ||1 s.t. BΦCH = R, (17)

where ||Φ||1 =
∑
i,j |Φij | is the `1-norm of vec(Φ). In [13],

the authors consider a greedy based approach which extends the
standard OMP to matrix form to solve (17).

With the noisy version of (16), we aim to solve the following
`1-norm minimization problem

minΦ

{
1

2
||R−BΦCH ||2F + λ||Φ||1

}
, (18)

where λ is a regularization parameter and || · ||F denotes the
Frobenius norm. The authors in [13] extend FISTA to sparse matrix
recovery with matrix inputs. We can consider either the extended
OMP or FISTA for sparse matrix recovery in order to solve (16).
Once αi, βi, i ∈ {1, . . . ,M} are recovered, the corresponding fi
and θi are given by

θ̂i = tan−1
(
βi
αi

)
,

f̂i =
αi

cos(θi)
. (19)

B. PARAFAC Analysis Approach

The joint DOA and carrier frequency recovery problem can
also be treated as a 2D-DOA recovery problem, with the second
variable being the frequency rather than an additional angle. The
2D-DOA problem requires both finding the two unknown angles,
and pairing them. One effective solution relies on the trilinear model
and PARAFAC analysis [14], [15].
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1) Preliminary Results: A trilinear model as defined in [18] is a
tensor T with general element

ti,j,k =

F∑
f=1

ai,fbj,fck,f . (20)

Here, ai,f , bj,f , ck,f are elements of the matrices A,B,C accord-
ingly, and F is called the loading factor. The matrices A,B,C can
be recovered from the tensor T using the PARAFAC analysis if the
Kruskal condition [19] holds, namely

κA + κB + κC ≥ 2M + 2, (21)

where κA denote the Kruskal rank of the matrix A. In the next
section, we show how we can formulate a trilinear model from (12)-
(13) and how this model relates to the recovery of f and θ.

2) Trilinear Model: Consider two sub-arrays along each axis; the
first sub-array along the x-axis consists of the first N − 1 sensors,
i.e. sensors {1, ..., N − 1} and the second one is composed of the
last N − 1 sensors, i.e. {2, ..., N}, along the same axis. Similarly,
the first sub-array along the z-axis consists of sensors {1, ..., N},
and the second one contains the last N sensors {2, ..., N + 1}. For
these sub-arrays, we have

x1 = Ax1
(f , θ) ·w, x2 = Ax2

(f , θ) ·w, (22)
z1 = Az1 (f , θ) ·w, z2 = Az2 (f , θ) ·w. (23)

Here, the vectors x1 and x2 contain the N −1 first and last rows of
x and the matrices Ax1

and Ax2
are composed of the N − 1 first

and last rows of Ax, respectively. The corresponding vectors and
matrices are similarly defined for the z-axis. From the properties of
Ax and Az , which are steering matrices of ULAs, it is easy to see
that

Ax2
= Ax1

Φ1, Az2 = Az1Φ2, (24)

where

Φ1 , diag
(
ej2πf1τ

x
1 (θ1), ..., ej2πfMτ

x
1 (θM )

)
Φ2 , diag

(
ej2πf1τ

z
1 (θ1), ..., ej2πfMτ

z
1 (θM )

)
.

Consider the following correlation matrices:

R1 , E
[
x1z

H
1

]
= Ax1

RwAH
z1 ,

R2 , E
[
x2z

H
1

]
= Ax2

RwAH
z1 = Ax1

Φ1RwAH
z1 ,

R3 , E
[
x1z

H
2

]
= Ax1RwAH

z2 = Ax1RwΦH
2 AH

z1 ,

R4 , E
[
x2z

H
2

]
= Ax2

RwAH
z2 = Ax1

Φ1RwΦH2 AH
z1 .

Again, these matrices are assumed to be known but can be estimated
as in (15). In order for the above correlation matrices to fit the
trilinear model, we define the 4×M matrix R whose kth column
is given by

Rk ,


Rwkk

ej2πfkτ
x
1 (θk) ·Rwkk

e−j2πfkτ
z
1 (θk) ·Rwkk

e−j2πfkτ
x
1 (θk) · ej2πfkτz1 (θk) ·Rwkk

 . (25)

Last, define the 3D tensor, ∆N×(N−1)×4, with its kth slice ∆k =
Rk, k ∈ {1, ..., 4} as follows

∆k = Rk = Ax1
diag

[(
RT
)
k

]
AH
z1 . (26)

It can then be easily seen that the typical element of ∆ is given by

∆i,j,k = ΣMm=1ai,mbj,mck,m, (27)

where ai,m denotes the (i,m)th element of Ax1
, bj,m denotes the

(j,m)th element of Az1 and ck,m denotes the (k,m)th element
of R. Therefore, the tensor ∆ follows the trilinear model, with its
trilinear decomposition given by (27).

3) Reconstruction Conditions: The following theorem presents
sufficient conditions for the perfect recovery of R from ∆.

Theorem 2. If:
• fi cos θi 6= fj cos θj + k, ∀k, for every i 6= j,
• fi sin θi 6= fj sin θj + k, ∀k, for every i 6= j,
• d < c

fNyq
,

• N ≥M + 1,
then,

(
f̂ , θ̂
)

can be uniquely recovered from ∆, as defined in (27).

The proof of Theorem 2 relies on showing that the Kruskal
condition holds here. The steering matrices are Vandermonde and
therefore full Kruskal rank and it can be easily shown that under
the above conditions, the Kruskal rank of R is at least 2. Therefore,
R, and as a consequence

(
f̂ , θ̂
)

, can be uniquely recovered from
∆, as shown below.

4) Reconstruction Method: One possible method for solving
the trilinear model is the PARAFAC [18] algorithm, whose con-
cept we now briefly describe. Consider the following matri-
ces: AI×F ,BJ×F ,CK×F and the tensor DI×J×K such that

Di,k,j =
F∑
f=1

ai,fbj,fck,f . The goal is to decompose D to A,B,C.

The trilinear model (20) can be written as a bilinear model by
unfolding the tensor D along some dimension, e.g. DI×J·K =
A · Z, where ZF×J·K is a matrix with its lth row defines by
zTl , [bl ⊗ cl]

T , where ⊗ is the Kronecker product operation.
The algorithm iteratively estimates each of the matrices A,B,C
using the Alternative Least Square (ALS) method. Convergence is
determined by a threshold or maximum iterations number. Once R
is recovered from ∆,

(
f̂ , θ̂
)

is given by (19), where αi and βi are
defined as

αi = fi cos(θi) =
c

2πd
· ∠R2,i

R1,i
(28)

βi = fi sin(θi) =
c

2πd
· ∠R3,i

R1,i
. (29)

C. Perfect Blind Spectrum Reconstruction

Once
(
f̂ , θ̂
)

are recovered, we can construct either of the steering
matrices which are both full column rank from the Kruskal rank
condition (21), and ŵ is obtained as follows

ŵ = A†x

(
f̂ , θ̂
)

x. (30)

The following theorem presents the conditions for s to be uniquely
reconstructed from w.

Theorem 3. Let
(
f̂ , θ̂, ŵ

)
be the unique solution of (12) and (13).

If:
• cl 6= 0 ∀l ∈ {−L0, ..., L0}, where cl is defined in (4),
• fs = fp ≥ B

then, {ŝi}Mi=1 can be uniquely recovered from w.

Theorem 3 guarantees that no information is lost in the analog
preprocessing, namely there an is injective mapping from w to s,
and si can be uniquely recovered from wi as

Ŝi (f) =
1

cla
Wi

(
ej2π(f+fi+la·fp)Ts

)
, f ∈ B, (31)

where la =
⌊
fi
fp

⌋
+ f .
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Fig. 3. Carrier frequency and AOA reconstruction performance vs. total number of
sensors 2N + 1, with SNR = 10dB, Q = 300, M = 3.

Fig. 4. Carrier frequency and AOA reconstruction performance vs. SNR, with 2N+
1 = 11, Q = 300, M = 3.

V. SIMULATIONS

In this section, we demonstrate the reconstruction of the
PARAFAC analysis approach only, for lack of space. Consider
M = 3 complex-valued narrowband source signals si (t) , i =
1, 2, 3, each of width B = 50MHz and with fNyq = 10GHz.
The carrier frequencies fi and AOAs θi are drawn uniformly at
random from

[
− fNyq−B

2 ,
fNyq−B

2

]
, and [−85◦, 85◦], respectively. The

L-shaped array is composed of 2N + 1 sensors; N along the x-
axis, and N + 1, along the z-axis, with mixing and sampling rates

fs = fp = 1.2B. We use mixing function p (t) =
∞∑

l=−∞
δ
(
t− l

fp

)
.

Note that in the case where M = 3, the minimal required number
of sensors is 2M + 3 = 9. The received signal at each sensor is
corrupted with additive white Gaussian noise (AWGN). To recover
the carrier frequencies and AOAs from the the input samples, we
use the COMFAC MATLAB function implemented in [20].

The first simulations focus on the recovery of the carrier frequen-
cies fi and AOAs θi. The reconstruction performance is measured

by the following criteria: Ef =
1
M

∑m
i=1|fi−f̂i|
fNyq

for the frequencies,

and Eθ =
1
M

∑m
i=1|θi−θ̂i|
180◦ for the AOAs.

The first simulation examines the recovery performance with
respect to the number of sensors 2N + 1. Figure 3 presents the
carrier frequency and AOA reconstruction performance for different
values of the latter. The second simulation, presented in Fig. 4,
illustrates the impact of SNR on the recovery performance. Last, Fig.
5 demonstrates signal reconstruction and shows the normalized mean
square error (MSE) of the estimator with respect to its maximal
value E||s−ŝ||2

maxE||s−ŝ||2 under different SNR scenarios.

Fig. 5. Signal reconstruction performance vs. SNR, with 2N + 1 = 25 Q = 500,
M = 3.
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